
LLNL-CONF-645076

Multi-Threaded Streamline
Tracing on Data-Intensive
Architectures

M. Jiang, B. V. Essen, C. D. Harrison, M. B.
Gokhale

October 21, 2013

IEEE Symposium on Large Data Analysis and Visualization
Paris, France
November 9, 2014 through November 14, 2014



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Multi-Threaded Streamline Tracing for Data-Intensive Architectures
Ming Jiang Brian Van Essen Cyrus Harrison Maya Gokhale

Lawrence Livermore National Laboratory∗

ABSTRACT

Streamline tracing is an important tool used in many scientific do-
mains for visualizing and analyzing flow fields. In this work, we
examine a shared memory multi-threaded approach to streamline
tracing that targets emerging data-intensive architectures. We take
an in-depth look at data management strategies for streamline trac-
ing in terms of issues, such as memory latency, bandwidth, and
capacity limitations, that are applicable to future HPC platforms.
We present two data management strategies for streamline tracing
and evaluate their effectiveness for data-intensive architectures with
locally attached Flash. We provide a comprehensive evaluation of
both strategies by examining the strong and weak scaling implica-
tions of a variety of parameters. We also characterize the relation-
ship between I/O concurrency and I/O efficiency to guide the selec-
tion of strategy based on use case. From our experiments, we find
that using kernel-managed memory-map for out-of-core streamline
tracing can outperform optimized user-managed cache.

Keywords: streamline tracing, memory-map, data management,
out-of-core algorithms, data-intensive computing

1 INTRODUCTION

Streamline tracing is an important tool for scientific data analysis
and visualization of flow fields. It is used in many scientific do-
mains, such as aerodynamics, fusion and hydrodynamics. Stream-
lines provide a very powerful way to visualize the intricate struc-
tures of a flow field. For flow analysis, they are used to identify
swirling features (i.e. vortices) that are the dominant coherent struc-
tures in turbulent flows [13, 14]. Computing streamlines represents
a significant challenge for large-scale flow fields due to the irreg-
ular, data-dependent access patterns necessary for streamline inte-
gration. The difficulty stems from the data set size, seeding density
and distribution, as well as the flow field complexity [22]. In many
ways, generating multiple streamlines in parallel is a data-intensive
problem with a low computation to data movement ratio.

In recent years, there has been a rise in hardware technologies
designed for high-performance data-intensive computing to address
Big Data problems [12, 10]. Data-intensive applications are pri-
marily characterized by very large working sets that exceed main
memory, as well as unstructured and irregular data access patterns.
They are particularly affected by memory latency, bandwidth, and
capacity limitations. Rapid advancements in capacity and perfor-
mance of non-volatile random access memory (NVRAM) have led
to new approaches for developing data-intensive architectures, e.g.
the Gordon [7] and Catalyst [1] systems. NVRAMs are leveraged to
address the diminishing capacity of system DRAM per CPU core
and to tame the increasing cost of powering main memory [29].
Since these emerging trends will influence future exascale architec-
tures, NVRAM is expected to see wider use in memory and storage
hierarchies of future HPC platforms [2]. These emerging archi-
tectures will support massive on-node I/O concurrency, but design

∗Emails: {jiang4,vanessen1,harrison37,gokhale2}@llnl.gov

patterns and algorithmic techniques that can extract massive I/O
concurrency have not yet been established.

There are several recent studies on high-performance streamline
tracing methods in both parallel distributed and out-of-core con-
texts (see Section 2 for more details). What is currently lacking
is research on how to perform streamline tracing effectively on
data-intensive architectures using node-local NVRAM. The goal
of this paper is to achieve a better understanding of how to opti-
mize data movement within streamline tracing to take advantage of
data-intensive architectures. We take an in-depth look at data man-
agement strategies for streamline tracing in terms of data-intensive
issues, such as memory latency, bandwidth, and capacity limita-
tions. In general, we aim to identify and exploit high-concurrency
in order to maximize bandwidth and hide latency.

In our study, we examine a shared memory multi-threaded ap-
proach to streamline tracing that targets a multi-core CPU with lo-
cally attached NVRAM. We present two data management strate-
gies, called user-managed and kernel-managed, for out-of-core
streamline tracing and evaluate their effectiveness for data-intensive
architectures. Our work complements existing parallel distributed
methods that use a MPI-hybrid approach [6], by focusing on in-
creasing concurrency through multi-threading within a node. More
broadly, this study examines some of the data movement issues crit-
ical to in-situ [16] and in-transit [15] techniques, wherein the data
either resides or is staged onto the node-local storage.

In this paper, we systematically explore how to effectively im-
plement user-managed and kernel-managed strategies for multi-
threaded streamline tracing. We present three data-intensive op-
timizations for our implementations that aim to increase concur-
rency to maximize bandwidth and hide latency. We provide a com-
prehensive evaluation of both data management strategies by ex-
amining the strong and weak scaling implications of a variety of
parameters including: streamline length, and seeding density and
distribution. We also perform a detailed analysis of the relationship
between I/O concurrency and I/O efficiency to characterize the pa-
rameter space and guide the selection of strategy based on use case.
These experiments demonstrate that: 1) thread oversubscription of
cores in streamline tracing is an effective technique to hide I/O la-
tency on NVRAM, 2) in many cases, small to medium sized data
transfers yield better performance than large block transfers, and
3) using kernel-managed memory-map for out-of-core streamline
tracing can outperform optimized user-managed cache.

2 RELATED WORK

2.1 Streamline Tracing
Streamline tracing is a type of integration-based technique for
steady (time-independent) flow fields. There has been a tremendous
amount of research focused on flow visualization and analysis us-
ing integration-based techniques for both steady and unsteady flow
fields. McLoughlin et al. [17] provides an overview of the state-of-
the-art as well as challenges in this area. Note that there are other
types of integral lines for unsteady flow fields, such as pathlines and
streaklines. For this paper, we focus on exploring how to effectively
implement streamline tracing for data-intensive architectures.

For large-scale data, out-of-core techniques are commonly used
to achieve high I/O performance to access data stored on disk [24].
For flow visualization, Ueng et al. [26] presented an approach to



compute streamlines of large unstructured grids by using an oc-
tree to partition the raw data for fast data fetching. Bruckschen
et al. [3] described a technique for computing particle traces in a
pre-processing stage, which are then retrieved on demand during
rendering. Recently, Chen et al. [9, 8] proposed a flow-guided data
layout algorithm and prefetching scheme that is more I/O efficient
than the Hilbert spacing filling curve layout [23]. They developed
a multi-threaded system that is similar to [25], with a single I/O
thread and multiple compute threads.

For parallel distributed environments, Yu et al. [30] proposed
pathlets, or short pathlines, for visualizing unsteady flow fields.
Chen et al. [11] proposed to distribute data blocks by using spectral
clustering to segment flow fields into blocks with minimal commu-
nication overhead. Nouanesengsy et al. [19] used a graph model
and non-convex quadratic programming to estimate and balance
the distribution of block workloads. Peterka et al. [21] presented
a study that illustrates how the workload per process can vary due
to the differences among the local flow when generating pathlines.
Recently, Nouanesengsy et al. [18] proposed a pipelined model to
improve I/O performance for parallel particle advection by group-
ing and advecting particles over multiple time intervals.

In practice, a global pre-analysis and re-partitioning of the flow
field data can be computationally expensive and requires extra stor-
age. The following parallel streamline algorithms focus on work-
ing with unmodified and pre-partitioned simulation data. Pugmire
et al. [22] conducted a study using different parallelization strate-
gies. They avoided the cost of pre-processing, and chose a combi-
nation of static decomposition and out-of-core data loading. Camp
et al. [6] proposed a MPI-hybrid approach that leverages the poten-
tial for shared memory on multicore nodes.

In another study, Camp et al. [5] proposed maintaining a local
cache by using an extended memory hierarchy that can improve the
overall performance up to 2× over a parallel file system. We extend
this idea by focusing on how to manage the “local cache” when us-
ing PCIe-attached NVRAMs. In particular, we explore ways to op-
timize the data movement for two data management strategies, and
provide a comprehensive, in-depth evaluation of their performance
using a variety of parameters, including data representations.

2.2 Data-Intensive Computing with NVRAM
Data-intensive node architectures with direct I/O-bus-attached
NVRAM are emerging in HPC to address the demands of big data-
intensive applications and the challenges of scaling system DRAM
to match the growth in number of CPU cores [12, 28]. Current
NVRAM technologies such as Flash arrays, and future technolo-
gies, such as phase-change memory (PCM) or memristors, have
high bandwidth, low latency access for both sequential and random
read/write operations, but require high degrees of concurrency to
attain good performance.

Recent work by Van Essen et al. [27] explores the impact of
node-local NVRAM on several data-intensive applications: the Liv-
ermore Metagenomics Analysis Toolkit (LMAT), and a large-scale
asynchronous graph analysis library (HavoqGT). For these applica-
tions, they combine a custom memory-map runtime and node-local
NVRAM to demonstrate that increasing I/O concurrency can have
a dramatic improvement on the application’s performance over the
standard Linux memory-map runtime.

3 DATA-INTENSIVE STREAMLINE TRACING

In this section, we take an in-depth look at the data management
strategies for data-intensive streamline tracing and discuss the de-
sign choices for our evaluation.

3.1 Data Representation Schemes
As shown in Section 2.1, streamline tracing can be performed di-
rectly on the unmodified and pre-partitioned simulation data, which

we refer to as native data blocks, or using a data layout optimized
for spatial locality. While the optimized data layout approach often
requires a computationally expensive pre-processing step, it can be
significantly more efficient than native data blocks during stream-
line integration. Determining which approach is preferable depends
on the underlying use case.

In many simulations, the regions of interest in a flow field are not
known a priori. In these cases, exploratory analysis is used with the
goal of constructing streamlines that characterize the overall nature
of the flow and identify any regions or features that merit further
analysis. For exploratory analysis, using the native data blocks is
common, especially when an optimized data layout requires a pre-
processing step that can take an order of magnitude more time than
the actual analysis. In cases where the nature of the flow field is
understood a priori to a certain degree, an in-depth analysis is used
to extract information about specific flow features or regions of in-
terest. In these cases, pre-processing the data set to optimize the
data access for flow analysis can lead to overall performance gains.

3.1.1 Native Data Blocks
In this paper, we focus our evaluation on flow fields defined on
structured grids with an implicit grid topology. Typically, these
grids are uniformly pre-partitioned into sub-grids (data blocks) for
the simulation. Rather than using the original simulation output, we
use the velocity vectors that are extracted and stored in row-major
order as a brick-of-values (BOV) file for each data block. During
data access, a BOV file is retrieved from the node-local NVRAM if
a velocity vector that resides in that data block is needed.

3.1.2 Optimized Data Layout
Although there are several optimized data layouts for streamline
tracing, we chose the Hilbert space filling curve [23] for the follow-
ing reasons. First, the Hilbert curve is a popular technique that has
been used in numerous applications in large-scale visualization and
analysis. Second, compared to data-aware layouts, such as the flow-
guided layout [9, 8], there are fewer parameters that a user would
need to tune in order to use the Hilbert curve effectively. Third,
it exhibits optimal geometric locality properties for efficient data
traversal [23]. Fourth, its implementation for structured grids is rel-
atively straightforward, and its index computation has a negligible
impact on the overall performance for data-intensive applications.

3.2 Data Management Strategies
Effectively managing the data is a critical aspect of optimizing
data movement within streamline tracing for data-intensive archi-
tectures. Our goal is to identify and exploit high I/O concurrency
in order to maximize bandwidth and hide latency. We present two
data management strategies for multi-threaded streamline tracing:
user-managed and kernel-managed. In order to capture the data
movement of existing streamline tracing methods, we provide con-
crete implementations for both strategies using the two data rep-
resentation schemes described previously: native data blocks and
optimized data layout. Our four implementations are thus referred
to as: native-user, hilbert-user, native-mmap and hilbert-mmap.

Figure 1 illustrates the data layout schemes in file and the corre-
sponding data access patterns in memory for all four implementa-
tions. To isolate the characteristics of NVRAM for our evaluation,
we assume all data of interest have been constructed and transferred
onto the node-local storage before streamline integration. Details
on the construction and transfer times are provided in Section 5.

The key differences between the two data management strategies
are: 1) how data movement (I/O) is handled between NVRAM and
memory, and 2) who (user or kernel) manages cache occupancy and
capacity once data is moved from NVRAM into memory. Figure 2
illustrates three different types of I/O available on the Linux OS.
Managing cache occupancy requires determining if the desired data



Data 
Layout 

Data 
Access 

User-managed: Explicit I/O 

Native-user Hilbert-user 

Kernel-managed: Implicit I/O 

Hilbert-mmap Native-mmap 

Figure 1: Illustrates the data layout scheme in file and the corresponding data access pattern in memory for each management implementation.

is in the cache or has to be fetched from storage. Managing cache
capacity requires determining what data to evict from the cache.
Additionally, these actions have to be performed safely in a shared
memory multi-threaded environment.

3.2.1 User-Managed Strategy
The user-managed strategy relies on explicit I/O with a user space
cache to buffer portions of the data set as they are accessed dur-
ing streamline integration. It is utilized in existing streamline trac-
ing methods and is typically implemented as a “least recently used
(LRU) cache” [22, 5, 6, 9]. For this strategy, a read request can
use either standard I/O, which reads the data into the system’s page
cache and then copies it into the user cache, or direct I/O, which is
not buffered by the OS. Our user-managed cache implementation
uses a LRU eviction policy and locks to provide safe access and
management of the cache.

For our native-user implementation, data access is performed us-
ing the native data blocks. No extra processing is required to handle
these data blocks. For our hilbert-user implementation, once the
original data set has been serialized into the Hilbert curve, the seri-
alized data can be divided into various chunk sizes and grouped into
multiple files. Data access requires a Hilbert index conversion and
is performed at the chunk level, which can be much smaller than
the native data blocks. We provide a detailed analysis of the im-
plication of using different chunk sizes in terms of I/O concurrency
and I/O efficiency in Section 6.2.

3.2.2 Kernel-Managed Strategy
The kernel-managed strategy relies on implicit I/O through the OS
virtual file system buffer cache algorithms that can be interfaced
using the memory-map (mmap) functionality. When using mmap
I/O, the application accesses the file data as if it were in memory
through load and store memory requests. All data movement into
the system’s page cache is handled implicitly by the OS and all
data is moved in page-sized blocks (e.g. typically 4KiB). Using
the kernel-managed mmap runtime relieves the user from most as-
pects of data management. Data within the page cache is evicted
using a least recently faulted (LRF) policy that approximates LRU,
and occupancy is determined through a combination of dedicated
hardware and low-level system software.

Using mmap I/O for implementing out-of-core algorithms has re-
cently become a viable option for data-intensive architectures with
node-local NVRAM [20, 27]. The benefit of the mmap interface is
that access to the mmap-ed region in the application’s address space
will transparently check if the page is in memory and if not, it will
trigger the necessary file I/O for the data. Another benefit is that a
page is shared by all processes that access data on that page.

For our native-mmap implementation, we considered construct-
ing the data into a single file of either full row-major order or block
row-major order. Although the full row-major order requires no ad-
ditional index conversion during data access, our tests indicated that
it performs worse during data construction and access due to poor
spatial locality. In our evaluation, we use the block row-major order
as illustrated in Figure 1. For our hilbert-mmap implementation, we
used a single file for the serialized data in Hilbert layout.

4 EVALUATION METHODOLOGY

In this section, we present our methodology for evaluating the per-
formance of the data management strategies for shared memory
multi-threaded streamline tracing. Our evaluation includes: data
intensive optimizations, I/O concurrency and I/O efficiency trade-
off, and strong and weak scaling implications.

4.1 Data-Intensive Optimizations
The first optimization deals with how data movement (I/O) is han-
dled for the user-managed strategy. As presented in Section 3.2.1, a
read request for this strategy can use either standard I/O (buffered)
or direct I/O (unbuffered). For existing streamline tracing methods
using this strategy, the issue of standard I/O vs. direct I/O has been
mostly ignored. Standard I/O allows for unaligned data accesses,
but requires a second copy from the page cache into the applica-
tion’s memory buffer and doubles the amount of memory necessary.
Direct I/O is much more efficient, but has the requirement that I/O
accesses have to be aligned to file blocks. Detailed analysis on this
optimization is shown in Section 6.1.1.

The second optimization deals with minimizing lock contention
on the user-managed cache to increase I/O concurrency. Existing
out-of-core streamline tracing methods [9, 8] use an approach (sin-
gle I/O thread and multiple compute-threads) that was designed
for the traditional “spinning disk”. Modern NVRAM has a much
higher bandwidth that cannot be saturated with a single I/O thread.
With multiple I/O threads, lock contention on the cache can degrade
performance. In Section 6.1.2, we explore the benefits of splitting
the cache into independent banks to reduce lock contention, at the
cost of increasing cache fragmentation.

The third optimization deals with managing page cache capac-
ity for the kernel-managed strategy. One of the challenges for man-
aging an out-of-core mmap implementation is that the Linux run-
time prefers not to evict mmap-ed data, which as observed in [28]
can degrade performance. We take advantage of the fact that for
streamline tracing the data is read-only, thus we can use the Linux
madvise(-,-,MADV DONTNEED) system call to indicate that
any of the data can be evicted. The performance impact of this
optimization is shown in Section 6.1.3.



Kernel Space 

  System  Memory 

Page Cache 

Node-local NVRAM 

Data Blocks 

Direct I/O 

mmap I/O 

User Space 

I/O Requests 
(read/write) 

Mem Requests 
(load/store) 

Figure 2: Linux OS I/O: standard, direct and mmap. Solid arrow
indicates data copying and dashed arrow indicates data mapping.

4.2 I/O Concurrency and I/O Efficiency
Optimizing data movement for NVRAM requires a balance be-
tween available I/O concurrency and I/O efficiency. Traditionally,
large I/O transfers have been more efficient because they can max-
imize the utilization of the I/O bus bandwidth with relatively low
concurrency. However, NVRAM technologies support much higher
levels of I/O concurrency and thus can saturate the I/O bus band-
width with many, smaller I/O transfers.

For the data management strategies, there are a variety of trans-
fer sizes used during data access. Whereas the transfer size for
kernel-managed strategy is at the page size (e.g. typically 4KiB),
the transfer size for user-managed strategy varies from the native
block size to Hilbert chunk size, both of which can be orders of
magnitude larger than a page. Hence, one way to determine which
strategy is effective for a given use case is by characterizing the re-
lationship between I/O concurrency and I/O efficiency in terms of
transfer size. To accomplish this, we designed an experiment using
the hilbert-user implementation, which allows us to vary the chunk
size at runtime without the need to re-construct the data layout. Re-
sults from this experiment are provided in Section 6.2.

4.3 Scaling: Strong and Weak
We compare the performance of the data management strategies
using strong and weak scaling experiments by varying the follow-
ing parameters: streamline length (maximum number of integration
steps), and seeding density and distribution. We use both uniform
seeding (exploratory analysis) and feature-based seeding (in-depth
analysis) at various levels of density. For strong scaling, we use a
fixed streamline length at 8192 and double the number of threads
from 2 to 64. For weak scaling, existing work (see Section 2) vary
the streamline length, seeding density or both. From a problem-size
perspective, doubling the streamline length is equivalent to dou-
bling the seeding density. For our experiments, we decided to dou-
ble the streamline length along with the number of threads.

For uniform seeding, we uniformly distribute the seed points
throughout the data set, starting with one seed point per native data
block. We increase the seeding density by doubling in each dimen-
sion. For feature-based seeding, we utilize high vorticity magnitude
(|ω|) as an indicator for the presence of vortical flows, starting with
an initial seed set at high threshold. We increase the seeding density
by using lower threshold ranges.

5 EXPERIMENTAL SETUP

5.1 Implementation Details
Our streamline tracing code is implemented using the fourth-order
Runge-Kutta numerical integration scheme with a constant step

size. Other commonly used integration schemes can be utilized in
our evaluation just as well. For the user-managed strategy, we im-
plemented a pre-allocation scheme for the LRU cache rather than
a typical lazy allocation scheme. Although lazy allocation seems
reasonable for standard I/O, it can lead to excessive memory frag-
mentation for direct I/O due to page-alignment. Effectively, “point-
ers” to page-aligned buffers would each take up an entire page. For
small data blocks, an extra page of overhead per block can no-
ticeably reduce the overall capacity of the cache. For the kernel-
managed strategy, the implementation was much simpler. Its map-
ping step is implemented using the mmap system call, which re-
quires no additional index conversion during data access. For multi-
threading through OpenMP, user-managed requires extra logic to
ensure thread-safety, whereas kernel-managed does not.

5.2 Data-Intensive HPC System
We used the LLNL Hyperion Data-Intensive Testbed (Hyperion-
DIT) to conduct our performance evaluation. Each node in the
Hyperion-DIT system is a dual socket 8-core 2.67GHz Intel Xeon
E5640 CPU with 24GiB of DRAM, and 4× 160GiB Fusion-io
Drive Duo PCIe 1.1 x4 Flash card. Each Fusion-io Duo Flash card
presents as 2 independent devices, so all 8 devices are in a RAID-0
configuration that has 640GiB of capacity with read-ahead set to
8KiB. For our experiments, we used RHEL kernel version 2.6.32
on an XFS file system. As typical of HPC systems, the Linux swap
subsystem (swapping of memory to disk) has been disabled.

Table 1 provides the construction timing in seconds on the
NVRAM (Fusion-io). For comparison, we also provide timings for
the local solid-state drive (SSD) and the global parallel file system
(Lustre). For each implementation, construction starts with native
data blocks on Lustre and ends with the data layout on Fusion-io.
For native-user, the timing simply refers to the copy time from Lus-
tre onto Fusion-io. For native-mmap, construction can be accom-
plished by concatenating the native data blocks into a single file.
For hilbert-user, we decided to use a single file to avoid unneces-
sary file I/O with multiple files. Thus its construction timing is the
same as hilbert-mmap.

Storage Nat-user Nat-mmap Hilbert

Fusion-io 1035 976 4559
SSD 7355 7213 7844

Lustre 1876 1834 12915

Table 1: Construction time for each implementation in seconds.

5.3 Rayleigh-Taylor Simulation
For our evaluation, we use data from a 30723 Rayleigh-Taylor (RT)
instability simulation from LLNL [4]. As this simulation evolves,
two fluids mix creating a turbulent mixing layer that yields a com-
plex flow field. We selected a late-time snapshot from this simula-
tion that contains a flow field that varies from steady unmixed fluid,
to fast, turbulent flow in the mixing layer. Having this variation in
flow speed is what makes this data ideal for conducting our experi-
ments, because it can produce different data access patterns that are
representative of a wide range of flow fields.

The grid was uniformly pre-partitioned into 16×16×12 data
blocks, each of dimensions 192×192×256. The BOV file for each
native data block is of size 108MiB. For the Hilbert layout con-
struction, we decided to decompose the original 30723 data set into
3×3×3 partitions of size 10243. Within each partition, a Hilbert
layout is constructed. Figure 3 shows the velocity magnitude of the
data as well as streamlines traced from uniform and feature-based
seedings. The uniform seeding sets span the entire grid with sizes:
s1) 3072, s2) 8∗3072 and s3) 64∗3072. The feature-based seeding
sets, on the other hand, reside only in the turbulent mixing layer
with sizes: s1) 8509, s2) 32227 and s3) 163523, with threshold
ranges: |ω| ≥ 10, 10 > |ω| ≥ 8.5, and 8.5 > |ω| ≥ 7, respectively.



(a) Velocity magnitude (b) Uniformly seeded streamlines (c) Feature-based seeded streamlines
Figure 3: Visualization of the Rayleigh-Taylor simulation using a colormap and traced streamlines from uniform and feature-based seedings.

6 RESULTS

In this section, we present our experimental results designed to eval-
uate the effectiveness of the data management strategies for data-
intensive streamline tracing. Details on our evaluation methodol-
ogy are presented in Section 4. Even though we performed a full
parameter sweep for all experiments, we only present representative
results for each experiment due to space considerations.

6.1 Data-Intensive Optimizations
6.1.1 Standard I/O vs. Direct I/O
As described in Section 4.1, selecting standard I/O vs. direct I/O
only applies to the user-managed strategy. We are interested in un-
derstanding which I/O method is effective for streamline tracing at
various data chunk sizes and levels of concurrency. For this experi-
ment, we developed test cases using uniform (s1: 3072) and feature-
based (s2: 32227) seedings with two streamline lengths: 4096 and
16384. We used hilbert-user, which allowed us to adjust the chunk
size for each run from 3 to 3072 pages, and selected three levels of
concurrency: 2, 8 and 64 threads.

3 12 48 192 768 3072
chunk size (page)

0

40

80

120

160

200

240

280

320

ti
m

e
 (

s)

std-02
dir-02

std-08
dir-08

std-64
dir-64

Seeds: 3072  -  Length: 4096

(a) Uniform-s1 – length 4096

3 12 48 192 768 3072
chunk size (page)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ti
m

e
 (

s)

std-02
dir-02

std-08
dir-08

std-64
dir-64

Seeds: 32227  -  Length: 16384

(b) Feature-s2 – length 16384
Figure 4: Comparing standard I/O vs. direct I/O in hilbert-user us-
ing various chunk sizes with uniform and feature-based seedings.

Figure 4 shows the results for standard I/O (dashed lines) and
direct I/O (solid lines). The x-axis depicts the chunk size in number
of pages, and the y-axis is time to completion. For both test cases,
direct I/O performs better than standard I/O across all chunk sizes
and levels of concurrency, with speedups of up to 3.1× and 2.98×,
respectively. The benefit is non-linear across chunk sizes, and the
best performing chunk size is different for each test case (see Sec-
tion 6.2 for more details). We note that standard I/O performs es-
pecially poorly at larger chunk sizes, due to memory pressure since
a larger amount of data is duplicated in the system and user buffers
than with smaller chunks. Hence, direct I/O also benefits native-
user with 108MiB blocks as well.

6.1.2 Minimizing Lock Contention
Banking can be an effective technique to mitigate the cost of cache
contention at high levels of concurrency for the user-managed strat-
egy. To better understand under which conditions is banking effec-
tive for streamline tracing, we designed an experiment using two
data chunk sizes (12 and 96 pages) for hilbert-user using uniform
(s1: 3072) seeding at length 8192.

2 4 8 16 32 64
# of banks

20

30

40

50

60

70

80

ti
m

e
 (

s)

08 threads
16 threads
32 threads
64 threads

Seeds: 3072  -  Length: 8192

(a) Chunk size: 12 pages

2 4 8 16 32 64
# of banks

20

30

40

50

60

70

80

ti
m

e
 (

s)

08 threads
16 threads
32 threads
64 threads

Seeds: 3072  -  Length: 8192

(b) Chunk size: 96 pages
Figure 5: Impact of banking hilbert-user at two chunk sizes on over-
all timing using uniform seeding across a range of bank sizes.

Figure 5 shows the results from four levels of concurrency: 8,
16, 32 and 64 threads. The x-axis depicts the number of banks,
and the y-axis is time to completion. For both chunk sizes, bank-
ing improves the performance across all four levels of concurrency.
However, we note that banking shows a higher improvement for
the smaller chunk size than the larger one, with speedups of up to
3.17× and 1.68×, respectively. The reason for this is because for
smaller chunk sizes, there is more cache activity as concurrency
increases and thus more lock contention that banking can mitigate.

#Banks 1 2 4 8 16

Timing 408 409 412 419 438
Hits 3914961 3914903 3914762 3914339 3913244

Misses 23407 23465 23606 24029 25124

Table 2: Impact of banking native-user at 16 threads on overall
timing (seconds) as well as cache hits and misses.

Note that as the number of banks increases, the improvement ta-
pers off, and as the chunk size increases, the tapering occurs sooner
at smaller bank sizes (see Figure 5b). In fact, at very large chunk
sizes, banking provides no improvement. To illustrate this, we
ran an experiment using native-user with 108MiB blocks. Table 2
shows the results using 16 threads and the number of banks ranging
from 1 to 16. Clearly for blocks this large, the overhead of lock



contention is minimal with respect to the cost of data movement,
as there is no benefit to adding banks. Furthermore, the impact of
fragmenting the cache into disjoint banks reduces its effective ca-
pacity and leads to an overall slowdown, as evidenced by the cache
hits and misses shown in Table 2.

6.1.3 Managing Page Cache Capacity
One challenge with using mmap I/O is that there is no easy way to
explicitly identify which data to remove when the page cache is full.
Periodically applying madvise with the MADV DONTNEED op-
tion can reduce the performance penalty from evicting mmap pages.
To better understand how this option can affect the performance
of streamline tracing using native-mmap and hilbert-mmap, we de-
signed an experiment using both uniform (s1: 3072) and feature-
based (s1: 8509) seedings at length 8192. We also ran experiments
to determine the ideal frequency to apply this option. The results
showed that from 2 to 32 seconds interval, there was no notice-
able change in performance. For consistency, we decided to use a
4-second interval for the following experiment.

2 4 8 16 32 64
# of threads

0

150

300

450

600

750

900

1050

ti
m

e
 (

s)

uniform-mmap
uniform-madv
feature-mmap
feature-madv

Seeds: 3072/8509  -  Length: 8192

(a) Native-mmap strong

2 4 8 16 32 64
# of threads

0

400

800

1200

1600

2000

ti
m

e
 (

s)

uniform-mmap
uniform-madv
featture-mmap
feature-madv

Seeds: 3072/8509

(b) Native-mmap weak
Figure 6: Comparing default mmap with mmap+madvise for
managing page cache capacity using strong and weak scaling tests.

Figure 6 shows the native-mmap results from strong and weak
scaling tests for default mmap (dashed lines) and mmap+madvise
(solid lines). The x-axis depicts number of threads, and the y-axis
is time to completion. Overall, applying the madvise option im-
proved the performance with speedups of up to 1.90× for native-
mmap and 1.52× for hilbert-mmap. We note that the overall perfor-
mance improvement is higher for native-mmap than hilbert-mmap,
because it has poorer spatial locality. Therefore, native-mmap has
to move more data and evict more pages, which puts more pressure
on the page cache eviction handler, thus giving madvise a greater
opportunity for improvement.

6.2 I/O Concurrency and I/O Efficiency
As presented in Section 4.2, optimizing data movement requires
a balance between I/O concurrency and I/O efficiency in terms of
transfer size. Understanding this relationship can help us determine
when a user-managed strategy is more advantageous than a kernel-
managed strategy for streamline tracing. To help answer this ques-
tion, we designed an experiment exploring a variety of conditions
for uniform (s1: 3072) and feature-based (s1: 8509) seedings, using
two streamline lengths: 4096 and 16384. In order to vary the trans-
fer size, we used hilbert-user to adjust the data chunk size, which is
its transfer size, for each run from 3 to 3072 pages.

Figure 7 shows the results from four levels of concurrency: 1,
2, 8 and 64 threads for uniform (top row) and feature-based (bot-
tom row) seedings. The x-axis depicts the chunk size in number of
pages, and the y-axis is time to completion. From these results, we
observe the following. First, at lower concurrency, larger transfer
sizes perform better, especially for feature-based seeding (see Fig-
ure 7c and 7d) due to spatial coherence of the resulting streamlines.
Second, as concurrency increases, smaller transfer sizes perform
better and show better improvement from having concurrency, with

3 12 48 192 768 3072
chunk size (page)

0

40

80

120

160

200

ti
m

e
 (

s)

1 thread
2 threads

8 threads
64 threads

Seeds: 3072  -  Length: 4096

(a) Uniform-s1 – length 4096

3 12 48 192 768 3072
chunk size (page)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ti
m

e
 (

s)

1 thread
2 threads

8 threads
64 threads

Seeds: 24576  -  Length: 16384

(b) Uniform-s1 – length 16384

3 12 48 192 768 3072
chunk size (page)

0

50

100

150

200

250

300

350

400

ti
m

e
 (

s)

1 thread
2 threads

8 threads
64 threads

Seeds: 8509  -  Length: 4096

(c) Feature-s1 – length 4096

3 12 48 192 768 3072
chunk size (page)

0

1000

2000

3000

4000

5000

6000

ti
m

e
 (

s)

1 thread
2 threads

8 threads
64 threads

Seeds: 32227  -  Length: 16384

(d) Feature-s1 – length 16384
Figure 7: Relationship between I/O concurrency and I/O efficiency
using various chunk sizes with uniform and feature-based seedings.

speedups of up to 2.48× from 8 to 64 threads. Finally, the optimal
transfer size at higher concurrency is towards the middle, due to
the tradeoff between higher transfer efficiency and data overfetch.

Note that where this “sweet spot” in the tradeoff occurs also de-
pends on both the simulation data as well as the system configu-
ration. Compounding this problem is that as I/O concurrency in-
creases, the sweet spot for transfer size also shifts. For example, in
Figure 7d, the sweet spot shifts from 784 pages at 1 thread down
to 96 pages at 64 threads. This shifting is another reason why opti-
mizing user-managed cache for streamline tracing is challenging.

Figure 7 also plots the performance of hilbert-mmap as a hor-
izontal dashed line in the color corresponding to the concurrency
level. The purpose is to show how mmap’s performance at a fixed
transfer size of 1 page compares to the user-managed cache at dif-
ferent transfer (chunk) sizes. Our results show that at lower con-
currency, hilbert-user typically performs better, especially at larger
transfer sizes for feature-based seeding. At higher concurrency,
however, hilbert-mmap is consistently as good as the best hilbert-
user results, because it can manage smaller transfer sizes (1 page)
more efficiently through hardware support for paging.

6.3 Scaling: Strong and Weak

We examine the strong and weak scaling implications of a variety
of parameters including: streamline length, and seeding density and
distribution. We compare optimized versions of user-managed and
kernel-managed strategies, by leveraging results from Section 6.1,
to ensure a fair comparison. For native-user, we used direct I/O
with a buffer size of 160 data blocks since that gave the best overall
performance for all seeding densities. For hilbert-user, we also used
direct I/O with chunk size of 96 pages with bank size correspond-
ing to the number of threads since that gave the best overall per-
formance. For native-mmap and hilbert-mmap, we used madvise
with the MADV DONTNEED option at 4-second intervals.

Figure 8 shows the results for strong and weak scaling for uni-
form (top row) and feature-based (bottom row) seedings at three
levels of density. The dashed lines show the user-managed results,
and the solid lines show the kernel-managed results. The x-axis de-
picts number of threads, and the y-axis is time to completion. In or-
der to generate legible graphs, we excluded the last two data points,



2 4 8 16 32 64
# of threads

0

100

200

300

400

500

600

700

800
ti

m
e
 (

s)

native-user
native-mmap

hilbert-user
hilbert-mmap

Seeds: 3072  -  Length: 8192

(a) Uniform-s1 strong

2 4 8 16 32 64
# of threads

0

600

1200

1800

2400

3000

3600

ti
m

e
 (

s)

native-user
native-mmap

hilbert-user
hilbert-mmap

Seeds: 8*3072  -  Length: 8192

(b) Uniform-s2 strong

2 4 8 16 32 64
# of threads

0

4000

8000

12000

16000

20000

24000

ti
m

e
 (

s)

native-user
native-mmap

hilbert-user
hilbert-mmap

Seeds: 64*3072  -  Length: 8192

(c) Uniform-s3 strong

2 4 8 16 32 64
# of threads

0

200

400

600

800

1000

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 3072

(d) Uniform-s1 weak

2 4 8 16 32 64
# of threads

0

1000

2000

3000

4000

5000

6000

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 8*3072

(e) Uniform-s2 weak

2 4 8 16 32 64
# of threads

0

4000

8000

12000

16000

20000

24000

28000

32000

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 64*3072

(f) Uniform-s3 weak

2 4 8 16 32 64
# of threads

0

150

300

450

600

750

900

1050

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 8509  -  Length: 8192

(g) Feature-s1 strong

2 4 8 16 32 64
# of threads

0

500

1000

1500

2000

2500

3000

3500

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 32227  -  Length: 8192

(h) Feature-s2 strong

2 4 8 16 32 64
# of threads

0

2000

4000

6000

8000

10000

12000

14000

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 163523  -  Length: 8192

(i) Feature-s3 strong

2 4 8 16 32 64
# of threads

0

200

400

600

800

1000

1200

1400

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 8509

(j) Feature-s1 weak

2 4 8 16 32 64
# of threads

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 32227

(k) Feature-s2 weak

2 4 8 16 32 64
# of threads

0

3000

6000

9000

12000

15000

18000

21000

ti
m

e
 (

s)

native-user
native-mmap
hilbert-user
hilbert-mmap

Seeds: 163523

(l) Feature-s3 weak
Figure 8: Strong and weak scaling tests for optimized user-managed and kernel-managed strategies using uniform and feature-based seedings.

at 32 and 64 threads, for native-user in all weak scaling cases. The
runtimes for these excluded points are up to two orders of magni-
tude higher than the plotted points.

Overall, these results indicate that kernel-managed outperforms
user-managed in both strong and weak scaling tests for both native
and Hilbert representations. For native representation (red lines)
under uniform seeding, native-user performs better than native-
mmap at 2 threads, but the performance drastically degrades with
increasing concurrency. Under feature-based seeding, the crossover
point for native-user and native-mmap shifts from 2 threads to 8
threads, but overall, native-mmap still achieves the best perfor-
mance. For Hilbert representation (blue lines), the performance
difference between the highly optimized hilbert-user and hilbert-
mmap is much smaller. At lower concurrency hilbert-user performs
better, but at higher concurrency hilbert-mmap performs better.

For strong scaling, native-mmap achieves speedups of up to
4.70× over native-user, and hilbert-mmap of up to 1.76× over
hilbert-user. For weak scaling, native-mmap achieves speedups of
up to 7.99× over native-user, and hilbert-mmap of up to 1.58× over
hilbert-user. Note that increasing the seeding density for both uni-
form and feature-based seedings does not change the overall scaling
behavior, which indicates that for capturing poor weak scaling be-
havior, increasing streamline length is more effective.

7 DISCUSSION

In this work, we took an in-depth look at the data management
strategies for streamline tracing in terms of issues, such as memory
latency, bandwidth, and capacity limitations, that are applicable to
future HPC platforms. We focused on evaluating the effectiveness
of user-managed and kernel-managed strategies for multi-threaded
streamline tracing for data-intensive architectures. Through a series
of carefully designed experiments and scaling tests, we determined
under which conditions each approach (native-user, native-mmap,
hilbert-user, and hilbert-mmap) performs well and explored some
of the reasons behind their performance.

Native-user generally scaled the worst in both strong and weak
scaling tests. In particular, increasing the streamline length is worse
for native-user because computing longer streamlines requires read-
ing more data blocks into memory without much opportunity for
spatial reuse. Our results show that at higher concurrency lev-
els smaller blocks are preferable to larger blocks. However, for
shorter streamlines, which are used in exploratory analysis, native
data blocks at lower concurrency sometimes performed the best.

Native-mmap can be a viable alternative to native-user, espe-
cially considering the minimal construction cost, in terms of time
and effort, for the block row-major order. Although it does not per-

form as well at lower concurrency, its overall performance at higher
concurrency is drastically better than native-user.

Hilbert-user can be optimized in several ways, including direct
I/O and banking. Unfortunately, selecting the optimal set of param-
eters in conjunction with the chunk size can be a challenging task.
There is no one set of parameters that yields the optimal perfor-
mance under the tested conditions. For example, the ideal chunk
size shifts from larger to smaller with increasing concurrency.

Hilbert-mmap achieved the best overall performance amongst
the four approaches. In contrast to hilbert-user, it does not require
tuning a complex set of parameters – applying madvise with the
MADV DONTNEED option periodically is straightforward. The ad-
vantage of using mmap to access data in a Hilbert layout is that it
can handle smaller transfer sizes (1 page) much more efficiently
through hardware paging support than hilbert-user.

In general, a user-managed strategy requires the user to actually
implement additional, and often nontrivial, cache management code
that must perform well and ensure thread safety. If equivalent (or
better) performance can be achieved with a kernel-managed strat-
egy, then the user can focus their time and energy on other tasks.

One shortcoming of using the kernel-managed mmap is the need
to combine all the data blocks into a single file. Although we
have demonstrated that this step can be performed efficiently, it still
serves as a barrier to mmap’s adoption. When a file is too big to fit
onto node-local NVRAM, it is conceivable to map in the file from
a parallel file system. However, this approach may challenge the
performance of kernel page caching. Another shortcoming is that
the transfer size for the default mmap cannot be readily adjusted to
support larger sizes, which our experiments have shown to be bene-
ficial for hilbert-user. Additionally, the kernel-managed mmap does
not perform as well for traditional “spinning disk” technologies that
cannot support high bandwidth with low latency random access.

At a high level, our experiments demonstrate the following.
First, contrary to common belief, thread oversubscription of sci-
entific data analysis tasks, such as streamline tracing, is an effective
technique to hide I/O latency on NVRAM. Second, in many cases,
small to medium transfer sizes yield better performance than large
block transfers. Third, using kernel-managed mmap for out-of-core
computation, when managed properly, can outperform optimized
user-managed cache. This study quantitatively overturns the well
accepted notion that it is necessary to devote considerable effort to
tune a user-managed cache to attain good performance.

8 CONCLUSION

In this work, we examined a shared memory multi-threaded ap-
proach to streamline tracing that targets data-intensive architec-



tures with node-local NVRAM. We presented two data manage-
ment strategies for streamline tracing: user-managed and kernel-
managed, along with data-intensive optimizations that achieved
speedups of up to 3.17×. We also took an in-depth look at the re-
lationship between I/O concurrency and I/O efficiency to better un-
derstand the key issues for optimizing data movement for NVRAM.
Finally, we provided a comprehensive evaluation of both strategies
by examining the strong and weak scaling implications of a variety
of parameters. From our experiments, we find that using kernel-
managed mmap for out-of-core streamline tracing can outperform
optimized user-managed cache. Our scaling results for each strat-
egy, along with the construction times, can be used together as a
guide for users to select the optimal strategy based on their use case.
More broadly, this study addressed some of the data movement is-
sues critical to in-situ and in-transit techniques for visualization and
analysis at extreme-scale.

For future work, we plan to apply our evaluation methodology to
other types of integration-based techniques, such as pathline trac-
ing for unsteady flow fields. While our out-of-core multi-threaded
approach is able to scale to very large data sets, it is also possible to
compose this approach with existing parallel distributed methods.
We plan to examine such compositions through a MPI+OpenMP
implementation for data-intensive architectures. As noted in Sec-
tion 7, the ability to adjust the transfer size at runtime for kernel-
managed mmap is currently inaccessible for applications. Current
research on a data-intensive mmap (DI-MMAP) runtime [27] is ex-
ploring how to optimize for out-of-core, data-intensive computing
by providing such capabilities. Using DI-MMAP with streamline
(and pathline) tracing is the subject of future work.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory
(LLNL) under Contract DE-AC52-07NA27344 (LLNL-CONF-
645076). Funding partially provided by LDRD 13-ERD-025. We
want to thank Bill Cabot, Andy Cook and Paul Miller at LLNL for
access to the Rayleigh-Taylor simulation data set.

REFERENCES

[1] Lawrence Livermore, Intel, Cray Produce Big Data Machine to
Serve as Catalyst for Next-Generation HPC Clusters. https:
//www.llnl.gov/news/newsreleases/2013/Nov/NR-
13-11-01.html, November 2013.

[2] Synergistic Challenges in Data-Intensive Science and Exascale
Computing, DOE ASCAC Report. http://science.energy.
gov/˜/media/ascr/ascac/pdf/reports/2013/ASCAC_
Data_Intensive_Computing_report_final.pdf, 2013.

[3] R. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy. Real-time out-
of-core visualization of particle traces. In IEEE symposium on parallel
and large-data visualization and graphics, pages 45–50, 2001.

[4] W. H. Cabot and A. W. Cook. Reynolds number effects on rayleigh–
taylor instability with possible implications for type ia supernovae.
Nature Physics, 2(8), 2006.

[5] D. Camp, H. Childs, A. Chourasia, C. Garth, and K. Joy. Evaluating
the benefits of an extended memory hierarchy for parallel streamline
algorithms. In IEEE Symposium on Large Data Analysis and Visual-
ization, pages 57–64, 2011.

[6] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. Joy. Streamline
integration using mpi-hybrid parallelism on a large multicore archi-
tecture. IEEE Transactions on Visualization and Computer Graphics,
17(11):1702–1713, 2011.

[7] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: using flash
memory to build fast, power-efficient clusters for data-intensive appli-
cations. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 217–228, 2009.

[8] C.-M. Chen, B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Flow-
guided file layout for out-of-core pathline computation. In IEEE Sym-
posium on Large Data Analysis and Visualization, 2012.

[9] C.-M. Chen, L. Xu, T. Lee, H. Shen, L. Xu, T.-Y. Lee, and H.-W. Shen.
A flow-guided file layout for out-of-core streamline computation. In
IEEE Pacific Visualization Symposium, pages 145–152, 2012.

[10] C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges,
techniques and technologies: A survey on big data. Information Sci-
ences, (0), 2014.

[11] L. Chen and I. Fujishiro. Optimizing parallel performance of stream-
line visualization for large distributed flow datasets. In IEEE Pacific
Visualization Symposium, pages 87–94, 2008.

[12] M. Gokhale, J. Cohen, A. Yoo, W. Miller, A. Jacob, C. Ulmer,
and R. Pearce. Hardware technologies for high-performance data-
intensive computing. Computer, 41(4):60–68, April 2008.

[13] M. Jiang, R. Machiraju, and D. S. Thompson. Detection and Visual-
ization of Vortices. In Visualization Handbook, pages 287–301. Aca-
demic Press, 2004.

[14] W. Kendall, J. Huang, and T. Peterka. Geometric quantification of fea-
tures in large flow fields. IEEE Computer Graphics and Applications,
32(4):46–54, 2012.

[15] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata
rich IO methods for portable high performance IO. In IEEE Interna-
tional Symposium on Parallel Distributed Processing, 2009.

[16] K.-L. Ma. In-situ visualization at extreme scale: challenges and op-
portunities. IEEE Computer Graphics and Applications, 29(6), 2009.

[17] Y. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over two decades of integration-based, geometric flow visualization.
Computer Graphics Forum, 29, 2010.

[18] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka. Par-
allel particle advection and ftle computation for time-varying flow
fields. In International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 61:1–61:11, 2012.

[19] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-balanced parallel
streamline generation on large scale vector fields. IEEE Transactions
on Visualization and Computer Graphics, 17(12):1785–1794, 2011.

[20] R. Pearce, M. Gokhale, and N. M. Amato. Multithreaded asyn-
chronous graph traversal for in-memory and semi-external memory.
In IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, 2010.

[21] T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. A study of parallel particle tracing for
steady-state and time-varying flow fields. In IEEE International Par-
allel & Distributed Processing Symposium, pages 580–591, 2011.

[22] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber. Scal-
able computation of streamlines on very large datasets. In Interna-
tional Conference on High Performance Computing Networking, Stor-
age and Analysis, pages 16:1–16:12, 2009.

[23] H. Sagan. Space-Filling Curves. Springer-Verlag, 1942.
[24] C. T. Silva, Y.-J. Chiang, J. El-Sana, and P. Lindstrom. Out-of-Core

Algorithms for Scientific Visualization and Computer Graphics. In
IEEE Visualization Course Notes, 2002.

[25] P. Sulatycke and K. Ghose. A fast multithreaded out-of-core visual-
ization technique. In International Parallel Processing Symposium /
Symposium on Parallel and Distributed Processing, 1999.

[26] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-core streamline visu-
alization on large unstructured meshes. IEEE Transactions on Visual-
ization and Computer Graphics, 3(4):370–380, 1997.

[27] B. Van Essen, H. Hsieh, S. Ames, R. Pearce, and M. Gokhale.
DI-MMAP–a scalable memory-map runtime for out-of-core data-
intensive applications. Cluster Computing, 2013.

[28] B. Van Essen, R. Pearce, S. Ames, and M. Gokhale. On the role of
NVRAM in data intensive HPC architectures: an evaluation. In IEEE
International Parallel & Distributed Processing Symposium, 2012.

[29] M. S. Ware, K. Rajamani, M. S. Floyd, B. Brock, J. C. Rubio, F. L. R.
III, and J. B. Carter. Architecting for power management: The IBM
POWER7(TM) approach. In 16th International Conference on High-
Performance Computer Architecture, pages 1–11, 2010.

[30] H. Yu, C. Wang, and K.-L. Ma. Parallel hierarchical visualization
of large time-varying 3d vector fields. In International Conference
on High Performance Computing Networking, Storage and Analysis,
pages 24:1–24:12, 2007.

https://www.llnl.gov/news/newsreleases/2013/Nov/NR-13-11-01.html
https://www.llnl.gov/news/newsreleases/2013/Nov/NR-13-11-01.html
https://www.llnl.gov/news/newsreleases/2013/Nov/NR-13-11-01.html
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/ASCAC_Data_Intensive_Computing_report_final.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/ASCAC_Data_Intensive_Computing_report_final.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/ASCAC_Data_Intensive_Computing_report_final.pdf

